OVERCOMING CHALLENGES OF LOGGING AND FORMATION EVALUATION IN A DEPLETED HPHT RESERVOIR ENVIRONMENT

Indriaty Susanto, Abigail Ives, Diana Cristancho
Shell UK HPHT Petrophysics team
Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the definitions of the Society of Petroleum Engineers.

Organic: Our use of the term “organic” includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: Our use of the term “resources plays” refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies: “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interests.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases.

There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell's 20-F for the year ended 31 December, 2015 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
DATA ACQUISITIONS

Field/Well Objectives
Reservoir Management
Assist Well Execution:
- Drilling performance
- Perforation Strategy

Requirements

Seismic survey
During Drilling:
- Formation Evaluation/ Integrity logging
- Pressure indication (Mud weight/perf.)

Data Collections
During Production:
- THP
- CH logging (saturation/flow)

Formation properties/ environmental condition
Well condition/ profile
Cost

Limitations

E&A
Development
Production
Abandon
- Shell (Operator), partnership: ExxonMobil, BP
- Discovered 1988, first production 2000
- 90m water depth, Gas/condensate HPHT fields (Heather, Fulmar, Pentland)
- Primary reservoir: Fulmar sandstone
 - Initial pressure 15400 psi @16900ft
 - Reservoir temperature 182°C /360°F
- 7 Development wells 1998-2003
MATURE RESERVOIR TARGET (FULMAR)

Well Objective:
- Upper and Lower Fulmar. The Upper Fulmar is depleted and pose risk of sand production
- Drilling option (Drill in Liner Vs open hole drilling) is dependent on sand presence above Fulmar (virgin condition) and its exposure to Fulmar sand (depleted).
- Minimise risk in drilling the overburden; narrow drilling window in Hod Mass Flow. Possible inflow from fracture. Use Managed Pressure Drilling
- Ensure casing integrity and sufficient cement bond as barrier to reservoir (well Integrity)

Well Risks:
- Borehole instability in the Kimmeridge Fm.
- Gas kicks in the Kimmeridge Fm. or Heather Fm.
- Borehole collapse and stuck BHA in the overburden
- Low formation strength in the chalk (weak zones, open fractures)
- Differential sticking in the Chalk Group
- Isolation of Hod Mass Flows
Logging Objective:

- Identification of fluid type in the overburden
- Select Perforation interval: Fulmar porosity and cement quality across production liner
- Overburden + Fulmar Formation Evaluation: Net-To-Gross, Porosity, Water Saturation
- Confirm the TOC, cement quality across production casing and ID across packer setting depth

<table>
<thead>
<tr>
<th>Hole size</th>
<th>MWD/LWD</th>
<th>Wireline</th>
</tr>
</thead>
<tbody>
<tr>
<td>20"</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16"</td>
<td>RES/GR/DIR</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| 12 ¼" | RES/GR/SONIC/DEN/NEU/DIR | 1A: Borehole Imaging
1B: Pressure/Sampling
1C: GR/CCL/CBL/VDL
10" cased hole:
GR/CCL/CBL/VDL
Ultrasonic cement tool |
| 8 ½" | RES/GR/SONIC/DEN/NEU/DIR | 5" cased hole:
GR/CCL/CBL/VDL
Ultrasonic cement tool |
Vendor selection was based on cost competitiveness vs. capability/performance. LWD & Wireline vendors were different for the first two wells.

LWD
- GR/RES/DEN/NEU/SON rating of 350°F maximum
- Power: battery HSE, solid limitation, position in the tool string
- Real time: 2 samples/ft minimum
- Contractual obligation readiness if tool is pushed beyond spec

Wireline
- GR/RES/DEN/NEU/SON rating of 500°F maximum
- Tools survival is limited by exposure to heat, power the tools close to target.
- Capstan installation
- Pressure/sampling: Depth control, stationary/sampling time. Temperature limitation of optical analyser ~350°F
PHASE II DEVELOPMENT
Overburden: GR-RES-(DEN-NEU-SON) obtained. Wireline run in Chalk Gp experienced stick-slip at Run 1. Subsequent run (pressure/samples) was cancelled. Note: () obtained in Chalk Gp.

Reservoir section was drilled using Drill in Liner and Formation evaluation performed on cased hole (CH) wireline data.

- Maximum measured temperature was 356°F (almost equal to estimated formation temperature).
- Applied sonic porosity and twinned well for evaluation.
POROSITY LOG

Density
Working but run out of spec

Sonic
Used for porosity calculation

Twin (offset) well
D-N porosity (left) Vs Compressional sonic (left)

Well 1

[Image of the graph showing porosity and sonic data with markers at specific points labeled 1, 2, and 3.]
The ultrasonic tool was working but run outside the tool specification (designed for water environment but dips into mud accumulation at the bottom of the hole ~ 15.4 ppg)
Tool managed to deliver several good quality intervals after a few log passes
WELL # 1 LESSON LEARNT

Operational:

- (LWD) **Ensure good Real time data quality**, in case Recorded mode is damaged (burnt, Left In Hole or run out of memory due to unplanned delays)
- (LWD) **Manage memory space**, start recording closer to interval of interest
- (WL) **Minimise electronics temperature**, power up closer to interval of interest

Evaluation:

- Maximise possibility of good cement data & evaluation in OBM environment (prior to displacement to water). Also, compare the cement evaluation qualitatively with good quality CH sonic interval
- **Selection of sonic porosity parameter is assisted by the twin well evaluation**. Evaluate uncertainty based on porosity changes as a function of depletion
- **Water Saturation profile is evaluated based on scenarios (current and future application)**: consider alternative cases of shallower FWL, or possibility of water influx through zones of higher permeability when water is produced
Overburden: GR-RES-(SON) obtained. Note: () obtained in Chalk Gp

Reservoir section was evaluated using:
- LWD Tools for formation evaluation. Maximum measured temperature was 296°F (est. 59°F cooling effect)
- CH WL tools for cement evaluation lowest rating is 350°F. Maximum measured temperature was 344°F (est. 11°F cooling effect)

Lesson Learnt:

LWD sonic formation signal is masked by environmental effects (collar arrival). Solution is to reprocess using CH wireline as reference
SONIC ACQUISITION

Well 1 CH WL

Well 2 Processed LWD OH (Red) & CH WL (blue)

LWD DTCO

WL CH DTCO

140 USPF 40

LWD Reprocessed

140 USPF 40
WELL # 3 – NFE PROSPECT

- **Overburden**: GR-RES-(SON) obtained. Note: () obtained in Chalk Gp

- **Reservoir section is logged using LWD trip after TD**
 - While drilling, the maximum measured temperature was 360°F (est. 13 deg F cooling effect). No LWD log obtained while drilling.
 - Attempted wireline but unable to run in the hole. Measured temperature was 340°F just after 10” csg shoe (~2000 ft vertical depth to TD, est. 15 deg cooling effect).

- Acquired data on dedicated wiper trip with LWD one week after TD – maximum measured temperature was 315°F (est. 55 deg F cooling effect).
WELL # 3 – NFE PROSPECT

Logging at Reservoir level
- GR, Resistivity, Sonic, Density, Neutron, Cement log

Perforation strategy (Porosity cut-off and cement quality)

Formation evaluation (drainage volume).

Estimate productivity (includes uncertainty)

Reservoir model calibration

Overburden: GR-RES-(SON) obtained. Note: () obtained in Chalk Gp

Reservoir section is logged using LWD trip after TD
- While drilling maximum measured temperature was 360°F (est. 13 deg F cooling effect). No LWD log obtained while drilling
- Attempted wireline but unable to run in the hole. Measured temperature was 340°F just after 10” csg shoe (~2000 ft vertical depth to TD, est. 15 deg cooling effect)
- Acquired data on dedicated wiper trip with LWD one week after TD – maximum measured temperature was 315°F (est. 55 deg F cooling effect)
WELL # 3 LESSON LEARNT

Operational:

- **Temperature can rise while drilling in a deviated hole** (e.g. due to friction). If expected temperature is at the limit of LWD operating envelope, then best to log by LWD wiper trip or on wireline.

Evaluation:

- **Invasion effects when logging during wiper trip can be expected**, evaluation uncertainty is increased at a step out area with limited reservoir property information.

- **Properties derived from logs and samples may vary significantly from those expected.** NFE prospect is some distance from and deeper than the main block.
 - Collect and use regional analogues to develop scenarios.
SUMMARY

✓ Job Preparation accounts for 50% success, if not more!

✓ Risk v Reward:
 ✓ Have contingency/decision tree prepared
 ✓ Be flexible and ready to implement/execute changes to plan at short notice as driven by risk

✓ Establish and maintain line of communication between subsurface, drilling and contractors.
Q&A