PROVING CONTAINMENT FOR CCS IN GOLDENEYE

DEVEX, Aberdeen,
15 May, 2013

Cliff Lovelock
Senior Production Geologist, Shell U.K. Ltd
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies.

“Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, May 15, 2013. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

Copyright of SHELL UK LTD
AGENDA

- Brief outline of the Longannet CCS project
- How much containment do we need?
 - Cap-rock
 - Overburden
 - Beyond?
- Some other considerations
- Conclusions
THE LONGANNET TO GOLDENEYE PROJECT

- CO₂ extracted from flue gas at Scottish Power’s 2.4 GW coal-fired Longannet Power Station
- CO₂ piped to St Fergus Gas Terminal using existing National Grid gas pipeline
- CO₂ transported to Goldeneye field using existing 101 km offshore pipeline
- Carbon capture technology provided by Aker Clean Carbon, already tested on site with mobile pilot plant
- CO₂ stored in the depleted gas reservoir, injecting via existing platform wells
Can the Goldeneye site safely store a volume of CO$_2$ delivered over the proscribed time period from the power plant?

- Does it have the capacity?
- Can we transport and inject it?
- Will the CO$_2$ stay in the store?
- Can it be monitored and can corrective measures be deployed?
HOW MUCH CONTAINMENT DO WE NEED?

- Definitions taken from the EU directive

3. 'storage site' means a defined volume area within a geological formation used for the geological storage of CO₂ and associated surface and injection facilities;

5. 'leakage' means any release of CO₂ from the storage complex;

6. 'storage complex' means the storage site and surrounding geological domain which can have an effect on overall storage integrity and security; that is, secondary containment formations;

15. 'CO₂ plume' means the dispersing volume of CO₂ in the geological formation;

17. 'significant irregularity' means any irregularity in the injection or storage operations or in the condition of the storage complex itself, which implies the risk of a leakage or risk to the environment or human health;

19. 'corrective measures' means any measures taken to correct significant irregularities or to close leakages in order to prevent or stop the release of CO₂ from the storage complex;
A STORAGE COMPLEX FOR GOLDENEYE

Sea surface

Licence

Leak requiring emissions allowances

“Leakage”

Overburden

“Seal”

Hydraulically connected

Captain Lista & Dornoch

Nordland Group

Weastray & Stoney Groups

Moray Group

Lista mudstone

Montrose Group

Secondary Storage (overburden)

Chalk Group

Storage Site

Plume Mantle Frac

Captain Sandstone

Humber Frac

Plumeless Grouping

Complex Seal

Overburden

Hydraulically connected

Captain
PRIMARY BARRIER – RESERVOIR CAPROCK

From Goldeneye asset integrated geochemistry report, 2000

Marginal North Sea uplift (Alpine compression?)
NE North Sea uplift/hiatus (North Atlantic rifting)
Regional tilt (East Greenland doming)
Reservoir

STAGE III: Further burial and compression of gas 55MA till present day

STAGE IIIa: Further burial, compression of gas and oil charge 55MA till present day

Copyright of SHELL UK LTD
- The overburden has been mapped and modelled
- Geochemistry and Geomechanics of the caprock has been explored
Horizon slice (semblance volume) along one Eocene coal bed
MORE COMPLICATED OVERBURDEN GEOLOGY
HOW MUCH AQUIFER DO WE NEED IN THE STORAGE COMPLEX?

110km long aquifer model
Including
■ other fields
■ and aquifer extension scenarios
SOME OTHER CONSIDERATIONS

Geochemistry

- Reactive transport modelling in PHREEQC shows 0 or –ve porosity change in the caprock upon interaction with CO₂.

Geomechanics

- Modelled the effect of repressurising the field and introducing cold CO₂ into the reservoir.
- Models show that neither condition compromises caprock integrity.

Copyright of SHELL UK LTD

May 15, 2013
CONCLUSIONS

- Every way we have looked at the storage complex, we see no evidence that a leak is likely to occur when Goldeneye is filled with CO₂.

Specifically, we have shown:

- Goldeneye has a competent seal
 - No evidence for leakage during its life as a hydrocarbon reservoir
- Sufficient baffles and additional capacity in the overburden to contain any migration from the storage site
- Fluid chemistry and geomechanical effects do not significantly weaken the cap-rock
Thanks to:

- Department of Energy and Climate Change for supporting the project as part of the UK Demonstration competition
- Our consortium partners, ScottishPower and National Grid
- Our storage partner CO₂ Deepstore
- Team of over 120 professionals who contributed 20 man years work

Knowledge Transfer is the major product from the DECC Demo 1 Project

The detail of the work undertaken in FEED is available for all to read here:

http://www.decc.gov.uk/en/content/cms/emissions/ccs/demo_prog/feed/scottish_power/scottish_power.aspx

- 280 reports in 11 months – 75% of which have been made public!