Laggan-Tormore

“Reservoir to Sales Product Modelling, and Optimisation using an Integrated Modelling Approach”

K. Jones, G. Vizé, K. Watt (Total E&P UK Ltd)
Development Overview

MCP-01

234km Gas Export Pipeline
30” SVT to MCP01
665 MMscfd Laggan-Tormore

143km Multiphase Pipelines
(500 MMscfd)
2 x 18” gas lines
rock dump material

2 x 18” gas lines

8” MEG Line
2” Service Line
control umbilical

2 x Subsea Production Templates
6 slots ea. @ (>600m water depth)
Laggan & Tormore (5 + 4 wells)

New Shetland Gas Processing Plant
(being built adjacent to BP’s Sullom Voe Terminal)

600 Metres Water depth

DEVEX2012, AECC 9
- 10th May 2012
The Simple Eclipse Modelling Approach

Original Approach *(for project sanction Feb 2012)*

- Coupled Laggan-Tormore Eclipse models with pipeline network
- Black Oil PVT representation (3x stage flash to STC)
- Pipeline network *(pipeline pressure loss tables from a previous PIPESIM study)*
- Pipelines balanced, with well flow split 50:50 down each pipeline
- Pipeline turndowns controlled using *ACTION* keywords
- No condensed water modelled, or associated MEG or MeOH injection
SO - Why an Integrated Asset Model! - *It all worked fine before??*

- **Reservoir Engineer**
 - Black-Oil
 - Liquid and Gas “Arrival” Profiles
 - 2 Stage Process, and Flash to STC

- **Development Engineer**
 - Flow Assurance
 - BO De-lumping
 - Flow Assurance – VLPs, Turndown Constraints, Production Efficiencies

- **Economist**
 - Product “Sales” Profiles
 - Days of Repetitive Manual work

- **ECLIPSE* software**

- **HYSYS® software**
 - Condensate & Rich Gas
 - St Fergus & SVT

- **SGP** (15 models – 1 each year)

- **Flow Assurance**
Reasons for Developing WoS IAM

- The SUM is always greater than the PARTS
 - Working together generating Assumptions/Constraints & Model
 - Review of Results and Data generated by the IAM

- Establish a consensus via a “Development Work Flow Process”
 - Providing the framework to allow discrete disciplines to collaborate as a team
 - Retain “Metier” Validation of the individual model elements
 - IAM undertakes Global Optimisation
 - Geoscience/Reservoir team retains responsibility for “Issue” of Production Profiles

- WoS IAM to become the Regional Management Tool
 - Reserves
 - Long Term Plan Assumptions
 - Development Screening & Sanction
 - Back-out Calculations
 - Generation of Sales and Economics Profiles
 - QA Management

- WoS IAM has the potential to be expanded in synergy with Ops Systems
 - Production Reporting
 - Field Allocation
IAM Workflow

IPM software chosen (*Petex*)

- Mbal / Prosper / GAP
- RESOLVE
 - Manages and controls data flow
 - “conducts the orchestra”

RESOLVE
- Published Variables……Data
- Event Scheduling
- Constraint Management
- Production Optimisation
- Well Routing Optimisation - Giro
- Scenario Management
- History & QA Management

Virtual Environment

IAM Team

Reservoir

Production & Flow Assurance

SGP Process

TEPUK & SVT

Full Run in 6-20hrs
Basic Overall Architecture

- Laggan Eclipse 100 Model (black oil)
- Tormore Eclipse 100 Model (black oil)
- Laggan-Tormore GAP Model (twin, looped 18” flow lines)
- Shetland Gas Plant (SGP) HYSYS Model
- St Fergus HYSYS Model
- BP Sullom Voe Terminal (SVT) HYSYS Model
- Controlling sheets (excel) / additional calculations - MEG/hydrocarbon streams to HYSYS
- Resolve – controls everything (data stream between elements)
Is the IAM approach reliable??

- Try replicating Eclipse Assumptions as far as possible (to validate IAM)

Model output validated against results from previous ‘sequential’ approach

- Incorporate ECLIPSE turndown rules, 50:50 well splits into each flowline, and efficiencies

- IAM VALIDATED
 - Can now update assumptions
 - Use for development studies etc
WoS IAM – Now Ready for Development Studies!

Incorporate Improvements (compared to Eclipse/network Model)

- Representative well/pipeline routing – each well can only flow to one pipe at a time (see below). Well routing solved periodically by Resolve using a GIRO (Genetic Integer Routing Optimiser)

- Revised (updated) turndown rules on pipelines (HP → LP, 2 pipes → 1 Pipe → End)

- MEG injection / condensed water modelling
 - Condensed water now modelled, MEG injection volumes modelled (with 50% over-dosage)
 - MEG reclamation modelled at SGP
 - Impact on pipeline turndowns now captured

Eclipse Network – balanced flow
(Used in ‘ECLIPSE’ model but NOT reality)

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Eclipse Network</th>
<th>Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>31 bara 11 bara</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174 MMscf/d 106 MMscf/d 53 MMscf/d</td>
</tr>
</tbody>
</table>

Impact on pipeline turndowns now captured.
Study Examples:

Tie-ins

Late Time Sub Sea Gas Compression

Eclipse Reservoir models (and/or Mbal models)
Tie-in Additional Field - in detail (only GAP Model shown)

- Laggan-Tormore + Edradour Tie-in
 - Impact of Timing / Phasing with L-T wells
 - Impact on L-T (back-out effects)
 - Extended production L-T

DEVEX2012, AECC 9-10th May 2012
Additional Field Tie-in *(example of results)*

- Full Evaluation – *easily performed*
 - Back-out effects if start-up of additional field whilst L/T still on plateau
 - Ullage filling studies (late start-up)
 - Plateau extension
 - Late time production (deferred production)
Sub Sea Gas Compression (SSGP)- in Detail (Gap Model)

SSGC located at Laggan in this example

SSGC-Laggen Linked with Hysys model through RESOLVE
Evaluation of SSGC (example of results)

Switch to 1 pipe (Laggan ➔ SGP)

Can now start SSGP
Main Messages

- IAM offers clear benefits over simple Eclipse/network
 - Full integration “reservoir to sales products – looks at the big picture, pulls together many disciplines
 - HOWEVER, not a substitute on a day to day basis for the simple Eclipse/network approach which is good for basic well/field related reservoir engineering studies

- Complex issues can be captured in detail, and rigorously evaluated
 - Sub sea gas Compression
 - New field tie-ins / interactions

- Optimisations can be easily made, at any point in the system, on any parameter
 - Example: maximise condensate production

- Can perform debottlenecking studies
 - Example: Increase compression at SGP

- Can perform ad hoc studies
 - Example: dedicate Tormore alone to one of the twin pipelines, etc etc

Assistance from Software provider essential

- complex models (easy to set up incorrectly)
- many ways to solve and develop interfacing control spreadsheets, de-bugging
The authors acknowledge

- The contributions of many colleagues at TOTAL to the Laggan-Tormore project

- Laggan – Tormore & Edradour partner, DONG Energy, for permission to make this presentation