Fram Field Development Plan
UK Central North Sea

Presenter:

David Jones
Fram Subsurface Team Lead, Shell U.K. Limited

Contributors Shell U.K. Limited:

Samantha Large, Ahmed Helmi, Alan McQueen, Mensur Hodzic, Robert Cullen, Fola Sanwoolu, David Clutterbuck, Barry Meldrum, Bill Gray, Mark Robinson, Rob Jansen
Definitions and Cautionary Note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves and SEC proven mining reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves or SEC proven mining reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions and includes Oil Sands.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves and SEC proven mining reserves excluding changes resulting from acquisitions, divestments and year-end pricing impact.

Identified Items: This presentation refers to Identified Items which have been excluded from CCS earnings and EPS calculations. Please see page 4 of the Quarterly Results Announcement for a listing of those items.

To facilitate a better understanding of underlying business performance, the financial results are also presented on an estimated current cost of supplies (CCS) basis as applied for the Oil Products and Chemicals segment earnings. Earnings on an estimated current cost of supplies basis provides useful information concerning the effect of changes in the cost of supplies on Royal Dutch Shell’s results of operations and is a measure to manage the performance of the Oil Products and Chemicals segments but is not a measure of financial performance under IFRS.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell plc. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell plc to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. Also included as forward-looking statements in this presentation is our disclosure of reserves, proved oil and gas reserves, proven mining reserves, resources, and all future estimates of refining capacity, oil and gas production, capital investment and expenditure, cash from operations, dividends, share buybacks and investments. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for the Group’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserve estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory effects arising from re-categorisation of reserves; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2008 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 34% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

The United States Securities and Exchange Commission (SEC) permits oil and gas companies, in their filings with the SEC, to disclose only proved reserves that a company has demonstrated by actual production or conclusive formation tests to be economically and legally producible under existing economic and operating conditions. We use certain terms in this presentation that SEC’s guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
Overview

- Fram location and overview
- Exploration and appraisal history
- Key subsurface uncertainties
- Subsurface development concept
- Well and completion design
- Surface development concept
- Project schedule
Fram Field Location - UK Central North Sea
Regional Geology - Structural and Depositional Setting

- Palaeocene Forties Sandstone Member
- Basin-floor distal turbidite deposits
- 'Sheet-like' sands deposited in lobe sequences
- SW margin of main NW-SE Forties fan
- Distal and marginal location
- Further down depositional dip than analogues

UK Central North Sea - Quad 29
Southwest part of Central Graben
Northeast of Curlew Horst and west of Puffin Horst
Penetrative salt diapir structure (Zechstein salt)
Salt diapir above Late Jurassic footwall high
Deep structure controlled by Mesozoic rifting
Fram Discovery Overview

Field Summary

- UK Central North Sea
- Oil rim with primary gas cap
- HClIP 390 MMboe (approx.)
- P.012 Licence (Shell 28% Esso 72%)
- P.1664 Licence (Shell 50% Esso 50%)
- Palaeocene Forties Sandstone reservoir
- Porosity 18-28%, Perm 0.1-100mD
- Discovered in 1969 by 29/3-1 well
- Appraised in 1999 with 29/3a-6 well
- Appraised in 2009 with 29/3c-8, 8z wells
- 300 ft TVD thick oil rim (approx.)
- >1500 ft TVD gas column (approx.)
Fram Salt Diapir - 2007 PSDM Near-Stack Reflectivity Data

West

1700

29/8a-4

Salt diapir

Salt diapir

Top Forties time horizon

East

29/3-1

29/9c-7

TWT (ms)

2664

Approx 1km
Forties Reservoir Geology - Facies Scheme Summary

Well 29/3c-8

Thick amalgamated sands 3 – 15 ft thick

Amalgamated Sands (A)

Heterolithic Medium (HM)

Heterolithic Thin (HT)

Facies A

Fan A Grootkloof, Karoo, South Africa

Facies HM

Thin Bedded sheet sands and siltstones (heterolithics) (HM)

Facies HT

<1ft thick sands interbedded with shales

Ross Formation, County Clare, Ireland

Copyright of Shell UK Limited
Forties Reservoir Thinning - Forties Isochore Thickness Map

- Thick and high N/G Forties to NW
- Thin and low N/G Forties to SW of salt diapir
- Forties fan margin
- Lista high
- Thinning of Forties and N/G reduction to SE
- 29/8a-4 side lobe
Oil Rim Characterisation - 29/3c-8,8z Appraisal Wells 2009

Planned horizontal oil production well elevation - mid oil rim position

Gas-Oil-Contact (GOC)

DST1A 1,670bopd, 1,000 scf/bbl GOR, 40° API oil, 2% BS&W on a 40/64” choke

Free-water-level (FWL)

100% water saturation

100% water (aquifer)
Key Subsurface Field Development Uncertainties

■ Reservoir properties
 ■ Thickness of T75 reservoir zone relative to fluid contacts.
 ■ N/G variation and rate of reduction towards Forties pinch-out.
 ■ Facies distribution and proportions in southern area of field.
 ■ Permeability of reservoir sands (for well kh/PI).

■ Reservoir architecture
 ■ Stratigraphic connectivity (lateral extent of sands and shales).
 ■ Structural connectivity (influence of faults on fluid flow/pressure depletion).
Fram Proposed Development Well Locations

- Block 29/3c
- Block 29/8a
- Block 29/9c
- Block 29/4c
- PWRI
- GOC
- DCE
- DCW
- G2
- G3
- G4
- P1
- P2
- P3
- P4
- P5
- P2z
- P1z
- 29/3A-3
- 29/3-1
- 29/3A-6
- 29/3C-8
- 29/3C-7
- 29/8A-4
- FWL

Legend:
- 0 500 1000 1500 2000 2500m
Fram Proposed Development Well Locations (3D view)
Horizontal oil and gas producers - well design considerations and objectives

- Pilot holes to constrain depth uncertainty and determine depth of OWC for horizontal well placement.
- Cross-cut reservoir layers in T75 reservoir zone to maximise stratigraphic connectivity.
- Wells to target upper and lower Amalgamated Sand (A) packages based on Vsh seismic inversion volumes.
- 4000ft AH well lengths to optimise well spacing/drainage and kh (due to layered reservoir and low perm).
- Optimise stand-off from GOC and OWC to mitigate early gas and/or water breakthrough to wells.
Fram Well Concept Design - 4000 ft AH Horizontal Wells

Well Concept Design Summary

- Conventional CNS ‘5 string’ casing design
- 13 5/8” intermediate casing shoe at 7000ft MD
- Batch drilling of top hole and intermediate sections
- Water based mud system to be used in 17 1/2” hole
- 9 5/8” production casing set in Forties reservoir
- 4,000 ft AH Forties reservoir sections in 8 1/2” hole
- Ocean Guardian semi-sub drilling rig
- Expected drilling start date July 2012
- Wells to be cleaned-up to rig prior to suspension

Ocean Guardian drilling rig
Fram Well Completion Design

Well Completion Concept

- Wire wrapped screens with swellable packers.
- 5 ½” 13Cr sand screens with 316L wrap material and 200 micron slot size.
- Swellable packers for water/gas shut-off capability.
- Resman chemical tracers (oil and water sensitive).
- Dual Permanent downhole pressure gauges (PDHG).
- Gas lift completion for oil wells.
- Through tubing access to reservoir for interventions (e.g. PLTs).
- Gas well completion as per oil well completion (without gas lift or chemical tracers and single PDHG).
Subsea Design Summary

- 8 x subsea production trees – 5 oil and 3 gas.
- 4.4 km integrated flowline bundle.
- 2 x towhead production manifolds.
- Flexible risers from bundle midline structures to FPSO.
- 1 x subsea produced water re-injection (PWRI) tree.
- 2 km umbilical from PWRI tree to DCE towhead manifold.
- 3 km flexible flowline connecting the PWRI tree to the FPSO
- 18 km 14” carbon steel gas export pipeline.
- Tie-in point to 20” export line at Curlew Deep Gas Diverter.
- Pipeline end manifold (PLEM) at the Deep Gas Diverter.

Proposed subsea layout and pipeline routes
Fram Field Development Plan - FPSO and Subsea Facilities

Fram Development Schematic

KEY
- UMBILICAL
- GAS
- OIL
- LIFT GAS
- PRODUCED WATER

Graphics, Media & Publication Service (Aberdeen) ITU/IE : Ref 02/1204 November 2011
Fram Field Production Forecasts (base case)

- **Oil production profile**
 - 5 oil production wells + 3 gas wells
 - Oil rate includes crude + condensate
 - Peak oil rates approx. 18 kbopd (monthly average)
 - Oil rate decline driven by GOR development and water cut (gas cap expansion drive)

- **Gas production profile**
 - 5 oil production wells + 3 gas wells
 - Gas rate includes free + solution gas
 - Peak gas rates approx. 183 MMscf/d (monthly average)
Fram FPSO Development Project Schedule (Level 0)

- **DECC**
 - **2012**: P1664 Commitment – 12/02/13
 - **2014**: P.012 License Expiry – 17/12/14

- **FPSO**
 - **2012**: SELECT
 - **2013**: DESIGN, PROCUREMENT, HULL
 - **2014**: INTEGRATION & COMM.

- **SUBSEA**
 - **2011**: FEED
 - **2012**: PIPELINE - DESIGN, PROCURE & FABRICATE
 - **2013**: PIPELINE INSTALL
 - **2014**: BUNDLE - DESIGN, PROCURE & FABRICATE, BUNDLE INSTALL

- **WELLS**
 - **2011**: P1664
 - **2012**: DCE
 - **2013**: DCW

Key Events:
- **2011**: Development drilling start
- **2012**: Subsea installation
- **2013**: FPSO hook-up
- **2014**: Onstream