The Schoonebeek Field: EOR redevelopment of a European onshore giant

Ben Taylor
Production Geologist, Shell UK

Acknowledgements:
• Daan den Hartog Jager
• Frank Jelgersma
• Martin de Keijzer
Cautionary Statement

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. Also included as a forward looking statement is our disclosure of reserves, proved oil and gas reserves, proven mining reserves, organic reserves, net reserves and resources. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this [presentation, report or speech], including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for the Group’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserve estimates; (f) loss of market and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory effects arising from recategorisation of reserves; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this [presentation, report or speech] are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2007 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of [insert date of presentation, report or speech]. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this [presentation, report or speech].

The United States Securities and Exchange Commission (SEC) permits oil and gas companies, in their filings with the SEC, to disclose only proved reserves that a company has demonstrated by actual production or conclusive formation tests to be economically and legally producible under existing economic and operating conditions. We use certain terms in this [presentation, report or speech] that SEC’s guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

Also in this presentation we have aggregated our equity position in projects for both direct and indirect interest. For example, we have aggregated our indirect interest in the Pluto project via our 34% shareholding in Woodside Energy Ltd.
Presentation outline

- Field history
- Redevelopment decision
- Reservoir and Hydrocarbons
- Development strategy
- Challenges
- WSPE role
Field Overview

- Partners: NAM, EBN
- Cretaceous Bentheim Sandstone reservoir
- Discovery: 1943
- Production: 1944 – 1996 (abandoned)

- Viscous oil
- 599 vertical wells
- STOIIP: 1027 MMbbl
- Peak Production: 25000 bbl/d (1957)
- Cumulative production: 250 MMbbl
Why redevelop?

Schoonebeek Field
Top Bentheim structure

East: Main Water Drive Area
STOIIP: 690 MMbbl
Produced: 200 MMbbl
RF 29%

West: Solution Gas Drive Area
STOIIP: 337 MMbbl
Produced: 52 MMbbl
RF 15%

Expected UR - 51%

4 km
Why redevelop?

Bentheim Sandstone
- Lower Cretaceous
- Shoreface
- Massive sands
- Thickness: 0-40 m
- N/G: 98%
- Porosity: avg. 30%
- Permeability: 500-4000 mD
- Highly faulted anticlinal trap

Excellent Reservoir

SND-1
Problem: Viscous, waxy oil (160-200 cp)
- Low GOR
- Highly faulted reservoir

Solution: Horizontal steam injectors and producers
- Heat oil from 40°C to 200°C
- 200 cp → 1-3 cp
- UR: 15% → 51%

GASF = Gravity Assisted Steam Drive

Horizontal section depth between 640 and 920 meter

Vlieland Claystone (top seal)

Bentheim Sandstone reservoir

Oil / water Production

Steam Injection
Compartment Definition

1993 Post-Stack Time

2006 Pre-Stack Depth, High Definition (2005 acquisition)

Typical pre-drill top reservoir uncertainty: +/- 5 m
44 producers
25 steam injectors
4 observation wells

>90,000 km
>25,000 km horizontal
Well Delivery

- Compact land rig/s
 - Custom-made
 - Light
 - Mobile
 - Simple Wells

Drilltec Compact
Drilling Challenges: Collision

Base Bentheim, with existing wells and redevelopment wells
Drilling Challenges: Reservoir

- Offset well
- Structural uncertainty
- Calcite nodule
- "Soft" reservoir

- 2000-0.2 (ohm.m)
- 0-150 (API)

Drilling Challenges: Reservoir

10 – 30m
Example: SCH-1452

- Top reservoir 1m deep
- Base reservoir 1m deep
- Fault as prognosed

Orange-grey: Resistivity log
Yellow-brown: GR-log

Vertical exaggeration 5x
Well Site Petroleum Engineer (WSPE)

- Excellent Shell/NAM graduate training
- Cross-discipline learning
- 44 WSPE graduates

- Cuttings descriptions
- MWD log correlation
- Casing point confirmation
- Monitor horizontal section
- Section TDs
Summary

- Potential recognised in mature field

- Key enablers:
 - Technology advance (seismic, GASF, anti-collision)
 - Increased knowledge

- Campaign: experience aids efficiency
Acknowledgements

- Thanks to the Schoonebeek Project team:
 - Frank Jelgersma
 - Martin de Keijzer
 - Kate Smout
 - Daan den Hartog Jager
 - Frank de Mik
 - Andrew Foster