Spud To Reservoir With CWD / PDC Drill-Out Technology Using an Automated Drilling Rig

John Wingate
Operations Support Manager for Casing / Liner Drilling
Agenda

- Technologies
 - The rig
 - Casing while Drilling (CwD) bit
 - PDC drill-out bit
- The project
 - 2 Exploration wells
 - Drilling/casing plan
- Results
 - Nieuwendijk-1
 - Tiendeveen-1
- Conclusions
- Lessons
- See SPE 128219
Semi-Automated Drilling Rig

- Straight ‘out of the box’
- Containerised
- Small footprint
- Semi-automated pipe handler
- Singles rig
 - Horizontal set-back
- Touch screen driller’s console
 - Computerised auto-driller
- Casing drive tool
Casing while Drilling Bit

- Casing sub
- Rupture port
- Drillable steel alloy crown
- Nozzle
- PDC cutting structure
- Engineered internal profile for drill-out
PDC Drill-Out Bit

• Specialised PDC bit
• Two functions:
 – Drills out the CwD bit
 – Drills ahead
• Two sets of cutters
 – Tungsten carbide (TC)
 • Overexposed during drill-out
 • Drill out the CwD shoe
 • Protect the standard PDC cutters
 • Wear away in formation
 – PDC cutters
 • Exposed when TC cutters worn down after drill-out
 • Engages and drills new formation

8 1/2-in. Drill-out bit 6-in. Drill-out bit
The Project
Application

- 12-1/4" x 13-5/8" CwD bit
 - 4 blades, 13mm cutters
 - 4 x 14/32" nozzles
 - 780m to 2,075m (1,295m)

- 8-1/2" PDC drill-out bit
 - 6 blades, 16mm TC & PDC
 - 8-1/2" x 7" CwD bit
 - 4 blades, 13mm cutters
 - 4 x 14/32" nozzles
 - 2,075m to 2,500m (343m)

- 6" PDC drill-out bit
 - 4 blades, 16mm cutters
 - 4 x 14/32" nozzles
 - 0 to 780m (780m)
Spudding Nieuwendijk-1: 12 ¼-in. x 9 5/8-in. CwD Run
Results: 12-1/4 section – drilled with casing

- 12 1/4-in. hole drilled and cased simultaneously from surface to 780 m
 - 11 m/hr
- Planned v actual: 2.6 days v 4.4 days
 - 8 hr NPT
 - Bit balling
 - Slow connection times
- Auto-driller used to identify balling threshold
- The hole inclination at section TD was 0.63°
- Casing cemented through the nozzles successfully

12 1/4-in. x 9-5/8-in. CwD bit
Results: Drilling 8-1/2” section

- Drill-out bit run on a motor
- 12 1/4-in. CwD bit drilled out in 1.5 hr
- Drilled from 780 to section TD at 2075 m
 - 1295 m section length
 - ROP 7.4 m/hr
 - Offset required six bits: combined ROP of 7.0 m/hr
- Balling prevalent thru run
 - Auto-driller used to identify balling threshold
- Bit graded 1-1-WT-A-X-I-TD
- No damage to PDC cutters
Results: Running 7” casing

• After calling section TD the 7-in. casing run in hole
• Casing stood up at 1924 m – 151 m high
 – Depth coincided with a fault
 – Casing drive tool engaged
 – Casing reamed to bottom
 • 60 RPM, 0 to 20 klbs WOB, 800 lpm
• Casing cemented without issue
• There was a degree of geological uncertainty
 – The 8 1/2-in. CwD bit meant there was the capability to drill ahead
 – Option was not implemented

8 1/2 x 7-in. CwD bit
Results: Drilling 6” section

- Drilled out 8 1/2-in CwD bit in 13 min
- Drilled from 2075 to 2418 m
- Pulled early for a motor failure
- The bit was graded 1-2-WT-A-X-I-CT-DTF
 - The cutting structure was in excellent condition
 - Without the DTF, bit would have drilled to TD
- The well was completed with a standard PDC to 2677 m
Results: Well #2 (Tiendeveen-1)

- 17 1/2-in. x 13 3/8-in. CwD drilled from surface
 - 0 to 492 m
 - 33 hrs at 15 m/hr
- 12 1/4-in. PDC/drill-out bit
 - Drilled out the 17 1/2-in. x 13 3/8-in. CwD bit
 - Drilled from 492 to section TD at 2254 m
 - 1762 m section length
- 9 5/8-in. casing run on 12 1/4-in. CwD bit
- The 8 1/2-in. PDC/drill-out bit drilled out the 12 1/4-in. x 9 5/8-in. CwD bit
 - Drilled from 2254 to 2951 m
 - 697 m section length
 - Pulled for DTF
- Cumulative drilling length for CwD and PDC drill-outs was 2951 m
 - Longest achieved with this technology worldwide
Conclusion - General

• Nieuwendijk-1 was successfully drilled
 – Newly commissioned semi-automated drilling rig
 – CwD and PDC drill-out technology
 – 90% of the well drilled with this technology
• Completed & suspended inside AFE
• Included first CwD run in The Netherlands
• Motor failure stopped the entire well being drilled with CwD / PDC drill-out bits
• Total cumulate footage on two wells 5369 m
Conclusions - CwD

• Nieuwendijk-1 12 1/4-in. CwD run longest in the Europe using this system – 780 m
• The time taken to complete the 12 1/4-in. section with CwD was comparable using the same rig and conventional drilling techniques
• The 8 1/2-in. CwD bit ensured the 7-in. casing was set at depth saving 4.5 days NPT
• The 8 1/2-in. hole may still have been deepened even after casing had been run
• CwD enabled reduced tool/pipe handling and tripping events
Conclusions - Rig

• The automated pipe handling system and CwD BHA enabled a safe start to the well
• Less demanding than conventional drilling
 – Lower flow rates
 – Lower SPP
• Wells drilled using rigs with no set-back facility lend themselves to CwD techniques
 – The picking up and lying down of singles
 – Making up/breaking down of a conventional BHA
 – All add additional time to the operation
 • 2.1 days for a round trip using conventional drilling BHA
Conclusions – Drill-out PDC

• On both wells CwD bits were drilled out with drill-out PDC bits without incident
 – 5 drill-outs over the two wells
 – Less than an hour (average)
• The drill-out feature protected the primary cutting structure during drill-out
 – No damage to blades or PDC cutters
• Outperformed conventional bits
 – The best offset well required six bits to complete a comparable 8 1/2-in. section
 – The combined ROP over these six bits was 7.0 m/hr
 – 7.4 m/hr achieved in one PDC/drill-out run
Lessons

- Computerized auto-driller
 - Identified balling threshold
 - Enabled optimised ROP
 - Allowed precise ROP staging-up
- CwD bit design recommendations:
 - Three-bladed configuration
 - Interchangeable nozzles
 - Relocate the burst disk
 - Increasing cutter size (13 to 16mm)
- Centralizer design recommendations
 - Reduced blade count
 - Smoother transition to blade OD
Spud To Reservoir With CWD / PDC Drill-Out Technology Using an Automated Drilling Rig

John Wingate
Operations Support Manager for Casing / Liner Drilling