An Integrated Matrix of Assurance Services to Ensure Well Integrity in New and Ageing Infrastructure

Ian Williamson
Senergy
Agenda

- Who should be interested and why
 - The integrity issue
 - An approach to solve the issue
Who should be interested – and why!

The obvious candidates:
- Constructors of wells
- Operators of wells
- Regulators of wells

And also:
- Sellers of wells
- Buyers of wells
- Insurers of wells
- Financiers of wells

- **Anybody who is interested in maximising and protecting reputation and value in their upstream business**

- Also : No wells => redundant infrastructure
 Infrastructure integrity loss => wells are useless!
Well integrity risks can have enormous magnitude and consequence but low probability

Typically high consequence-low probability risks are difficult to quantify

Well Integrity Assurance is a way to reduce the risk of unplanned events.

A robust method of preventing massive loss of well integrity is critical to the future of the UKCS, especially in frontier technical or geographical areas.

- Current legislation
- Improved and systematic practises
So….

• the risk for the UKCS is also with the smaller more likely (or even inevitable) integrity issues which require to be and can be managed

• Minor integrity failures will have an amplified affect on our business

• Keep on top of well integrity or lose your business control ….The Well Integrity Vortex©
• Well integrity slips
• Not economic to repair
• Production declines
• Reserves lost

.....a downward spiral
Well Integrity Vortex ©

Well Maintenance Falls Behind → Loss of Well Integrity

Weak well integrity system

New Fields Sub-Economic → Revenue or Reserves Lost for Operator

Infrastructure Abandoned

Intervention to Repair More Complex

Opex Share Increases for Other Wells → Reserves Deferred & Lost

Opex Share Increases for the tied in fields

Well Shut-In → Unable to Justify Repair Cost

Reserves Lost for Nation

Reserves Lost for Nation
Loss of Integrity

- Macondo – 2010
 - Massive cost ……still evolving
- Piper Alpha – 1988
 - New platform
 - Claymore and Tartan shut in for over a year
 - $3.4 billion of insured claims – how much more was lost?

- Non UK gas platform
 - Shut down for extended period. >$1billion business interruption insurance claim
- Njord – April 2011
 - Shut down due to gas leak in riser
 - 70,000 boe/day deferred ($60million / week)
The Matrix Approach

• Map the full life cycle of the well
 • Design through production to abandonment

• Map the integrity requirements for:
 • People
 • Equipment
 • Procedures

• Identify each ‘brick’ or element which is required to maintain a competent wall
The Matrix Approach

- Construct the Integrity ‘Wall’ to identify all risks
- **Add the tools which allow manageable risks through**
- Each element has an owner, procedure, supplier, etc
<table>
<thead>
<tr>
<th>VALUE</th>
<th>Well Life Cycle</th>
<th>INTEGRITY</th>
</tr>
</thead>
</table>
| Development cost | 1. Design | • Competent engineers
| | 2. Construct
| | 3. Commission
| | 4. Operate
| | 5. Maintain
| | 6. Modify
| | 7. Suspend
| | 8. Abandon
| Manage value | 1. Design | • Operating parameter targets and limits
| | 2. Construct
| | 3. Commission
| | 4. Operate
| | 5. Maintain
| | 6. Modify
| | 7. Suspend
| | 8. Abandon
| Defer expenditure | 1. Design | • Constraints
| | 2. Construct
| | 3. Commission
| | 4. Operate
| | 5. Maintain
| | 6. Modify
| | 7. Suspend
| | 8. Abandon
| | • Operating procedures & responsibilities
| | • Testing & reporting
| | • Spares & repairs
| | • Robust engineering abandonment plans
| | INTEGRITY | • Realistic suspension methodology and durations
| | • Suspended well monitoring
| | • Robust engineering abandonment plans
| | 8. Abandon |
Well Integrity Elements that Everybody Needs to Have

Top Level Well Integrity Matrix

<table>
<thead>
<tr>
<th>Well Life Cycle</th>
<th>A. EQUIPMENT</th>
<th>B. PROCESSES & PROCEDURES</th>
<th>C. PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design</td>
<td>Equipment and material standards applicable to well types, fluid types, service type and duration.</td>
<td>Design Verification/Examination Peer assist, Peer review Contingency & relief well planning Certification and inspection requirements</td>
<td>Well engineering competence assessment Subsurface engagement and competence</td>
</tr>
<tr>
<td>3. Commission</td>
<td>Performance standards set and verified for installed equipment.</td>
<td>Handover process Operating parameter review process</td>
<td>Multidisciplinary skills Drilling & Production mutual understanding</td>
</tr>
<tr>
<td>4. Operate</td>
<td>Data gathering, monitoring and control systems functionality</td>
<td>Systems for operating within set parameters and responding to avoid deviations. Monitoring, testing & reporting process</td>
<td>Operator competence assessment</td>
</tr>
<tr>
<td>5. Maintain</td>
<td>Availability of appropriate spare parts. Condition monitoring capability</td>
<td>Maintenance process Management of priorities and backlog Management of degraded SCEs</td>
<td>Well equipment competence assessment</td>
</tr>
<tr>
<td>6. Modify</td>
<td>Continued suitability of equipment within new operating environment according to standards of the day</td>
<td>Management of change process Linked well design and production process</td>
<td>Awareness of and adherence to change processes</td>
</tr>
<tr>
<td>7. Suspend</td>
<td>Effective life span of suspension tools and equipment</td>
<td>Process to verify, monitor and periodically reassess. Establish forward plan for suspended wells</td>
<td>Well engineering competence assessment Subsurface engagement and competence</td>
</tr>
<tr>
<td>8. Abandon</td>
<td>Minimum standards according to reservoir and well type</td>
<td>Design Verification/Examination Application of standards</td>
<td>Well engineering competence assessment</td>
</tr>
</tbody>
</table>
Well Integrity Elements that Everybody Needs to Have

Equipment
- Procurement
- Changes in purpose throughout the well’s life
- Degradation

Procedures, Policies & Standards
- Broad range of activities & disciplines
- Handover procedures & knowledge

People
- Available resources with correct skills
- Change in ownership through well’s life
- Maintaining sufficient competence
Integrity Assurance Models

Well Life Cycle

1. **Design**
 - DESIGN VERIFICATION
 - Review design for well or well campaign

2. **Construct**
 - PROGRAMME VERIFICATION
 - Review programme for a well or campaign and ensure it reflects design
 - CONSTRUCTION VERIFICATION
 - Monitor drilling operations and verify integrity elements of design

3. **Commission**
 - WELL STATUS VERIFICATION
 - Review well stock for failures, risks, dispensations, outstanding work

4. **Operate**
 - INTERVENTION VERIFICATION
 - Review programme for intervention work

5. **Maintain**

6. **Modify**

7. **Suspend**

8. **Abandon**
 - ABANDONMENT DESIGN VERIFICATION
 - Review design and programme for well abandonment

Design Capability
- Assessment of organisational ability to deliver robust well designs

Well Construction Capability
- Assessment of organisational ability to deliver quality operations (including decommissioning)

Maintenance Capability
- Assessment of organisational ability to identify and carry out effective maintenance

Intervention Capability
- Assessment of organisational ability to deliver quality interventions
“My integrity is important to me so I can sell it to the highest bidder” – Newspaper cartoon!

- Reduces safety risk
- Reduces environmental risk
- Reduces reputational risk
- Reduces production deferment risk
- Increases predictability
- Maintains production longer
- Extends viable life for key infrastructure
- Reduces cost
- Reduces purchase risk
- Maximises selling revenue
- **It's good for business**

“Churn” is critical to the longevity of the UKCS, and systematic integrity assurance facilitates churn.
How and When?

• The matrix approach suggested is not difficult to generate or apply, but needs:
 • management commitment
 • systematic thinking
 • a base of standards and procedures
 • a competent, controlled, systematic and pragmatic approach to dispensation and risk assessment
 • focused application

• And it needs it now!

• Questions?